
Computational Physics

numerical methods with C++ (and UNIX)
2018-19

Fernando Barao
Instituto Superior Tecnico, Dep. Fisica

email: fernando.barao@tecnico.ulisboa.pt

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (1)

C++ Operators overloading

✔ commonly overloaded operators on user-defined classes

assignment operator =

binary arithmetic operators + − ∗
compound assignment operators + = − = ∗ =
comparison operators == ! =

unary operators + + − − − !

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (2)



Adding two points
binary operator +

✔ point P(1.,2.);

point Q(3.,1.);

point T = P + Q; // P is the current object

// Q is the argument

// similar to: point T = P.operator+(Q);

point point::operator+(const point& A) {

return point(x+A.x , y+A.y);

// in case we had pointers on private members

return point(*x+*(A.x), *y+*(A.y));

} // adds two points

Note that cannot be returned a reference to the object because it is a
local point object
(it disappears when function ends)!

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (3)

C++ compound assignment operators
✔ Compound assignment operators are destructive operators; they update

or replace the values on left-hand side of the assignment
they apply to the current object and update it

+= operator
const point& point::operator+=(const point& p) {

x += p.x;

y += p.y;

return *this;

} // adds a point to the current point

point P(1.,2.);

point Q(3.,1.);

Q += P; // Q = P + Q

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (4)



C++ unary operators
✔ they apply to the current object modifying or not their values

unary operator -
const point& point::operator-() {

x = -x;

y = -y;

return *this;

}

point P(1.,2.);

point Q = -P; // P.operator-() && copy constructor

point E;

E = -P; // P.operator-() && assignment operator

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (5)

C++ comparison operators

comparison operator ==
bool point::operator==(const point& A) {

if (*x == *(A.x) && *y == *(A.y)) return true;

}

point P(1.,2.);

point Q = P;

if (Q==P) cout << "similar points!" << endl;

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (6)



Creating class objects
✔ Now that we understood the

constructor role we can build
objects and refer to the public
available functions

locally
local object point

// make a point

point P(1.,2.);

P.Print(); //print point

P.X(); // look to x coo

P.Y(); // look to x coo

dynamically
local object point

// make a pointer to a new object

// constructor called

point *p = new point(1.,2.);

//print point (note the ->)

p->Print();

p->X(); //look to x coord

p->Y(); //look to y coord

class point
class point {

public:

//methods publically visible

point(double fx=0, fy=0):x(fx), y(fy){;} //constr

point(const point& p):x(p.x),y(p.y){;} //copy constr

point& operator=(const point& p); //assignment

point& operator+=(const point& p); //+=

point& operator-(const point& p); //-

point operator+(const point& p); //+

double X() const {return x;} // access the x coord

double Y() const {return y;} // access the y coord

void SetX (double); // set the x coord

void SetY (double); // set the y coord

void Print(); // print point

private:

double x; //X coordinate

double y; //Y coordinate

};

point A; point B(A); //copy constructor

point A=B; //copy constructor

A=B; //A.operator=(B), assignment operator

A+=B; //A.operator+=(B),

A=A+B; //A.operator=(A.operator+(B))

point C = A+B; //A.operator+(B) && copy constructor called

point D = A-B; //A.operator-(B) && copy constructor called

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (7)

Removing the object: destructor
✔ The destructor of a class its the function called for releasing the memory

that the class object allocated
point class destructor

class point {

public:

~point(); //destructor

};

✔ if no destructor is defined in the class block, the compiler will invoke its
own default destructor
data is removed from memory in reversed order with respect to the
order they appear in the class block

✔ the compiler default destructor is good enough for objects without data
members pointers
the default destructor would remove only the addresses variables and
not the pointed objects!

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (8)



C++ Classes: an example
Class header (IST.h)

#ifndef __IST__

#define __IST__

class IST {

public:

IST(); // constructor

~IST() {;} //destructor

void SetName(string); // set name

string GetName() {return name;} // accessor

private:

string name; float mark;

};

#endif

Class implementation (IST.C)
#include "IST.h"

IST::IST() { ////// default constructor

name ="";

mark=0.0;

}

void IST::SetName(string fname) {

name = fname;

}

using class (test.C)
#include "IST.h" //class header

int main() {

// mem allocated

IST* pIST = new IST();

pIST->SetName("Joao N.");

pIST->SetMark(15.5);

// vector of pointer objects

vector<IST*> vIST;

vIST.push_back(new IST("JJ",15,5));

//free memory

delete pIST;

delete vIST[0];

}

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (9)

C++ classes inheritance
✔ MEFT and MEEC are derived

classes of the base class IST

✔ Derived classes inherit all the
accessible members of the base
class

✔ The inheritance relationship of two classes is declared in the derived class

class MEFT : public IST {

public:

... //public members

private:

... //private members

};

✔ The keyword public specifies the most accessible level for the members inherited from the
base class - all inherited members keep their levels

the members of the derived class can access the protected members inherited from the
base class but not its private members (invisible members)

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (10)



C++ classes inheritance (cont.)
✔ With the keyword protected, all public members of the base class are inherited as

protected in the derived class

✔ the private keyword will not give access to the base class members from the derived class

class MEFT : protected IST {...};

class MEFT : private IST {...};

✔ If no access level is specified for the inheritance, the compiler assumes private for classes
declared with keyword class and public for those declared as struct

✔ A derived class (public access keyword) inherits every member of a base class except:
➜ its constructors and destructor
➜ its assignment operator members (=)
➜ its friends
➜ its private members

✔ Nevertheless, the derived class constructor call the default constructor of the base class
(the one without arguments) which must exist
➜ calling a different constructor is possible:

Derived_Construtor(parameters) : Base_Constructor(parameters) {...};

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (11)

class inheritance: virtual functions
✔ Virtual functions can be declared in a base class with the keyword virtual and

may be redefined (overriden) in each derived class when necessary

✔ Virtual functions will have the same name and same set of argu-
ment types in both base class and derived class, but they will perform
different actions

class Base {

public:

//virtual function declaration

virtual void Function(double);

};

class Derived: public Base {

public:

//objects Derived will use this function

void Function (double);

};

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (12)



class inheritance: abstract classes
✔ A virtual function declared in a base class can eventually stay undefined

due to lack of information - it will be called a pure virtual function
pure virtual function

class Base {

public:

//pure virtual function

virtual void Function(double) = 0;

};

✔ A class with one or more pure virtual functions is called an abstract
class

✔ No objects of an abstract class can be created

✔ A pure virtual function that is not defined in a derived class remains a
pure virtual function and the derived class is also an abstract class

Computational Physics 2018-19 (Phys Dep IST, Lisbon) Fernando Barao (13)


